Resilient Bay Landscapes NBWA Conference April 22, 2016

Jeremy Lowe Resilient Landscapes San Francisco Estuary Institute

AOSOC

Landscape Resilience Framework

• Synthesizes resilience science into conceptual framework

- Draws on **theory + empirical** ecological studies
- Input from expert advisory team
- Goal = help systematically apply resilience science at a landscape scale
- Seven fundamental principles

LANDSCAPE RESILIENCE FRAMEWORK

Operationalizing ecological resilience at the landscape scale

SAN FRANCISCO ESTUARY INSTITUTE SFEI AQUATIC SCIENCE CENTER

Resilient Silicon Valley: resilientsv.sfei.org

Setting

determines the constraints and opportunities within a landscape

- **Geophysical context:** underlying geology, soils, and topography
- Ecological context: characteristic species and habitats
- Historical and cultural context: how the landscape has changed over time
- Critical resources: Important but limiting factors

Processes

create and sustain landscapes in a dynamic way

- System drivers: large-scale forces like climate change and land use
- **Disturbance regimes:** expected but unpredictable events, like fires and floods
- Habitat-sustaining processes: dynamic, ongoing processes

Scale

provides space and time landscapes need to persist

- Large spaces: Areas large enough to accommodate key processes and large wildlife populations
- Long time scales: broad time horizons over which ecological functions must persist
- **Cross-scale interactions:** overlapping functions that occur across multiple spatial and temporal scales

Baylands

An ecologically resilient Bay landscape includes...

Connectivity

• **Connectivity between bayland and upland habitats** for wildlife movement around Bay perimeter

Process, Scale • Sufficient sediment from local watersheds to support tidal marsh persistence

Complexity/Diversity

Channel and marsh plain complexity to support diverse species

An ecologically resilient Bay landscape includes...

Connectivity, Complexity/Diversity

Streams

- Surface flow heterogeneity to support a range of species and as a barrier to spread of invasives
- **Process Flows** that cue the germination of native trees and steelhead migration, spawning, and rearing
- Process Sediment delivery from upper watersheds to channel, floodplain, and baylands
- **Connectivity Continuous riparian corridors** for wildlife movement from hills to bay
- Process, Scale Levee setbacks to support floodplain habitat hydrologically connected to channel

<image>

Novato Creek Baylands Long-term Vision

EBDA Landscape Vision

EBDA Landscape Vision - Processes

EBDA Landscape Vision - Processes

EBDA Landscape Vision - Processes

EBDA Landscape Vision - Coherence

EBDA Landscape Vision - Species Use

Resilient Silicon Valley: resilientsv.sfei.org

Novato Creek: sfei.org/projects/flood-control-20

East Bay: sfei.org/ebda-sea-level-plan

jeremyl@sfei.org

