Flood Control 2.0:

Rebuilding Habitat and Shoreline Resilience through a New Generation of Flood Control Channel Design and Management

North Bay Watershed Association November 6, 2015

WHY?

Flood Control Channels at the Bay Interface: A unique challenge and opportunity

- Increasing Economic Costs and Risk
 - Aging Infrastructure
 - -Increasing Flood Risk

WHY?

Flood Control Channels at the Bay Interface: A unique challenge and opportunity

- Significance to Bay Ecosystem
 - -High Ecological Diversity
 - -Steelhead Migration
 - -Delivery of Sediment
 - Delivery of Freshwater and Nutrients

 Sea Level Rise and Storm Events –
 Meeting Increasing Challenges for Flood Protection

 Sediment – Moving from Problems to Solutions

 Aging Infrastructure – Taking Advantage of Window of Opportunity

> Increase Resilience Support Multiple Benefits

Flood Control "2.0"

Goal:

Develop tools and a process for helping integrate habitat restoration and creation elements into flood risk management at the Bay interface

Project Partners

Project Leads

- San Francisco Estuary Partnership (SFEP)
- San Francisco Estuary Institute (SFEI)
- San Francisco Bay Joint Venture (SFBJV)

Bay Conservation and Development Commission (BCDC)

Implementation Project Partners

- San Francisquito Joint Powers Authority
- Marin County Flood Control and Water Conservation **District**
- **Contra Costa County Flood Control and Water Conservation District**

Regional Partner – BAFPAA

Funding from EPA SF Bay Water Quality Improvement Fund

Flood Control 2.0 Project Components

Timeline: 2012-2016

\$3,122,059 = \$1,552,059 (grant) + \$1,570,000 (Match)

How did local streams transport sediment across the lowlands to the Bay?

What can we learn from history?

Regional Historical Ecology Synthesis

Classify Historical
 Fluvial-Tidal Interface

Build Conceptual
 Models to Describe
 Historical Function

Historical Fluvial-Tidal Interface Types

Disconnected

Connected to Baylands

Connected to the Bay

Connected to Tidal Channel

Characterizing Historic and Current F-T Interface

HOW CREEKS MEET THE BAY: Changing Interfaces

A Product of the Flood Control 2.0 Project 📳 💆 🖉

Slide the bar on the map to compare historical (mid-1800's) and contemporary (2014) fluvial-tidal interfaces around San Francisco Bay.

San Francisco Bay's connections to local creeks are integral to its health. These fluvial-tidal (F-T) interfaces are the points of delivery for freshwater, sediment, contaminants, and nutrients. The ways in which the F-T interface has changed affect flooding dynamics, ecosystem functioning, and resilience to a changing climate. As the historical baylands have been altered, the majority of contemporary F-T interface types have changed leading to additional F-T interface types within the present-day landscape. Illustrations of each F-T interface type and methods

Marsh)

HOW CREEKS MEET THE BAY: Changing Interfaces

A Product of the Flood Control 2.0 Project 📳 💆 🔗

Slide the bar on the map to compare historical (mid-1800's) and contemporary (2014) fluvial-tidal interfaces around San Francisco Bay.

+

仚

San Francisco Bay's connections to local creeks are integral to its health. These fluvial-tidal (F-T) interfaces are the points of delivery for freshwater, sediment, contaminants, and nutrients. The ways in which the F-T interface has changed affect flooding dynamics, ecosystem functioning, and resilience to a changing climate. As the historical baylands have been altered, the majority of contemporary F-T interface types have changed leading to additional F-T interface types within the present-day landscape. Illustrations of each F-T interface type and methods for classification are available here.

Elk Q Vacaville Lodi Antioch Concord Stockton Tracy Livermore Modesto Fremont Turlock San Jose Copyright: © 2014 Esri | Esri, HERE, DeLorme, NGA, USGS | Esri, HERE, DeLorme

Legend

Historical Conditions F-T Interface Location

- - Tidal marsh channel
- Natural levee
- Tidal marshland
- Natural levee
- Disconnected
- Natural levee

Historical Baylands

Water

Tidal Flat

Tidal Marsh

Salt Pond or Panne

Beach or Dune

Contemporary Conditions

F-T Interface Location

- - Tidal marsh channel
 - Tidal channel through diked
 - baylands
 - Tidal channel through bayfill
 - Diked baylands
- Bayfill
 - Tributary channel
- Channel no longer present

Contemporary Baylands

Tidal Flat

Water

Tidal Marsh or Muted Tidal Marsh

> Diked Baylands (Salt Ponds, Managed Marsh)

How much sediment is in flood control channels?

Where does it go?

Characterizing Current Sediment Dynamics

SEDIMENT BUDGET

Wildcat Creek
Las Gallinas Creek

Coyote Creek

Alameda Creek Novato Creek

Belmont Creek

How can we integrate historical ecology and current sediment information?

Developing Regional Channel Typology

Historical (1850s)

- F-T interface type
- Relative watershed sediment yield
- Relative sediment storage

Current

- F-T interface type
- Relative watershed sediment yield
- Relative sediment storage
- Legacy and current management actions

What can we do with the sediment that we can't transport to the Bay with natural processes?

(close, cheap, high ecological value)

"SediMatch"

Sediment Match Up Website

How much will it cost?
Can it be permitted?

Regulatory and Economic Guidance

 Economic Analysis of Costs and Benefits of Traditional Flood Control Practices versus "Flood Control 2.0"

Regulatory Analysis, Recommendations and Guidance Document

Where are these ideas being implemented?

Implementation Projects

Implementation Project: Novato Creek

Developing a Vision

Historical (1850s)

- F-T interface type
- Relative watershed sediment yield
- Relative sediment storage

- F-T interface type
- Relative watershed sediment yield
- Relative sediment storage
- Legacy and current management actions

Fluvial Channel
Small Intertidal Channel
Tidal Marsh
Low Tidal Marsh
Salt Pond / Panne
Subtidal Channel
Channel Flat
Bay Flat
Shallow Bay

Habitat Type	Historical Acreage
Tidal Marsh	4,490
LowTidal Marsh	160
Salt Pond / Panne	240
SubtidalChannel	50
Channel Flat	320
Bay Flat (more bay flat existed south of the study area)	2,800
Total	8,060

Figure 9. Historical habitats of the Novato
Creek baylands, mid-1800s. An extensive tidal
marsh, totaling nearly 5,000 acres, surrounded
lower Novato Creek. Within the marsh plain
there were over 100 miles of tidal channels and
approximately 240 acres of salt pannes. A broad
tidal flat, over one mile wide, separated the
marsh from San Pablo Bay.

Table 3. Total area (acres) occupied by each habitat type historically.

Lower Novato Creek Vision

- Developed Vision w/ Marin Co and Science Advisors
- Focused on elements that could improve habitat and address flood risk
 - Creek/Bayland reconnection
 - Removing channel constriction points
 - Beneficial sediment reuse
- Elements are conceptual and based on opportunities & constraints, no feasibility assessment

NOVATO CREEK BAYLANDS LONG-TERM VISION

Please Note.

- Bel.Marin Keys Unit V & Hamilton Wetlands have existing restoration plans. The anticipated restored tidal marsh shown on Bel.Marin Keys Unit V & Hamilton Wetlands is illustrated from the State Coastal Conservancy's completed and proposed restoration plans. Please reference the State Coastal Conservancy's plans for additional site actions and associated habitats that are not shown.
- . This visioning did not include any modifications to the Bel Marin Keys Housing Development.

How will the outcomes from this effort be transferable?

Regional Implementation Toolbox

- Regional Management

 Concepts historical

 function, sediment dynamics,

 current opps and constraints
- Economic Analysis Template
- Regulatory Guidance
- Sedi-Match

What's Next for Flood Control 2.0

- Lower Walnut Creek HE and Vision (Fall 2015-Winter 2016)
- Regional Channel Management Typology (Spring 2016)
- Regulatory Guidance Document (Spring 2016)
- Web-based Toolbox (Fall 2016)

How can you find out more?

Podcasts at www.yourwetlands.org

Lower Novato Creek Redesign Project

Download mp3

There are extraordinary restoration projects being designed all around SF Bay. One of them is in the North Bay and is called "the Lower Novato Creek Redesign Project". With a history of flooding during large storms in downtown Novato, the community is supportive of projects that integrate flood control and include environmental enhancements. This program looks at the thinking behind the design of this project.

What is Flood Control 2.0?

Download mp3

Join our guest Robin Grossinger, a Senior Scientist at the San Francisco Estuary Institute as he describes Flood Control 2.0 and how bay area environmental organizations are rethinking the way that flooding is controlled around San Francisco Bay. Your Wetlands is a project of the San Francisco Bay Joint Venture.

For more information:

San Francisco Bay Joint Venture - www.sfbayjv.org

San Francisco Estuary Institute - www.sfei.org

San Francisco Estuary Partnership: http://www.sfestuary.org/our-projects/watershed-management/floodcontrol/

San Francisco Bay Conservation and Development Commission - www.bcdc.ca.gov

