CLIMATE CHANGE(D): WEATHERING EXTREMES TOGETHER MODULE 3

WATERSMART

Roger Bales, PhD, UC Merced

Multi-benefit, sustainable management of California's forested headwaters Roger Bales, UC Merced

- Multi-benefit pathway
- Water balance
- Other benefits
- Data & tools

Center for Ecosystem Climate Solutions

https://california-ecosystem-climate.solutions

Courtright Reservoir, Jun 2021

R. Bales photo

Headwater forests are multi-benefit assets, our natural capital

R. Bales photo

We need a multi-benefit approach to forest restoration & to longterm sustainable management

Upper Yuba, July 2020

For multi-benefit management, we need <u>systems thinking</u>, 2 we need clear objectives

Systems objective

Increase the pace & scale of transitioning from a destructive wildfire regime

to a beneficial, regenerative wildfire regime

Photo: USFS Region 5

August Complex, 2020

Photo: NPS

Bluff Managed Wildland Fire, Lassen Volcanic NP, 2004

Valuing & monetizing ecosystem services can help

French Meadows partners: USFS, county, water/hydropower agency, NGOs, UC, state

Monitoring & research are part of the adaptive-management cycle

We cannot just model our way to solutions, we need data!

and the second of the

French Meadows, Tahoe NF, Oct 2020

Photo: BA Coleman, PCWA

Forest restoration provides many benefits in addition to reducing the probability of high-severity wildfires, & the direct damage from fire & effects of smoke

> Creek Fire approaching Soaproot Saddle, Sept 2020

Forest thinning reduces water use by the forest

Removing small trees makes more water available for the remaining trees, for in-stream flows, & for food production & urban areas downstream

Basic water balance

Precipitation = Evapotranspiration + Runoff + Δ Storage

- Multi-benefit pathway
- → Water balance
- Other benefits
- Data & tools

Evapotranspiration refers to evaporation, sublimation plus water use by vegetation

<u>Average</u> annual applied water use for California, million acre ft (MAF)

Thinned area in foreground, dense riparian area in background

Vegetation grows back, so future prescribed fire, managed wildfire, or mechanical thinning are needed to maintain forest health

Example: American R basin water supply, using historical data

Medium-severity wildfire, or equivalent mechanical thinning, reduces forest evapotranspiration (ET)

This is just one of several co-benefits of restoration.

We & others have developed metrics & data for these benefits, which are used to inform decision making

Metrics & data must reflect our warming climate Forest thinning reduces drought-induced tree deaths & stores carbon in trees & soil – ecological integrity & resilience

- Multi-benefit pathway
- Water balance
- Other benefits
- Data & tools

Hydropower benefits are also important

Recreation benefits – high public demand

Reducing high-severity wildfire reduces erosion & risk to built infrastructure

Air Quality

French Gulch, 2004 French Fire, Whiskeytown NRA

THEFT

Making more use of forest products, including waste biomass, provides jobs, renewable energy, carbon sequestration

Rural communities are part of what makes California – and are vulnerable

Some capacity issues have been overcome & other severe limits remain.

- Multi-benefit pathway
 - Water balance
 - Other benefits
 - Data & tools

French Meadows, Oct 201

Runoff: brighter blue is

more runoff

Single year
 Compare years

pare years

What are you exploring?

Current and recent conditions

Vulnerabilities

O Expected effects of management

What conditions do you want to see?

▲ Overview of Ecosystem Issues

• Fuel, biomass and water composite

Vegetation Type

○ Overview of vegetation type

O Fraction herbaceous

O Fraction tree

○ Fraction shrub

Management / Disturbance History

Carbon Fluxes

OGPP

O NPP tree

O NPP shrub

O NPP herb

▲ Water Fluxes and Supply

Actual evapotranspiration
 Runoff amount
 Water shortfall
 Soil moisture

▲ Carbon Stocks

○ Live ○ Dead

- ⊖ Tree Biomass
- O Shrub Biomass
- O Standing Snags
- Fine Woody Detritus
- O Coarse Woody Detritus

▲ Fuels

Fuel type and amount
Coarse
Fine
Herbaceous

Select viewing mode:

Single yearCompare years

EXPLORE FEATURED DOWNLOAD ABOU

What are you exploring? • Current and recent conditions • Vulnerabilities • Expected effects of management

What conditions do you want to see?

A Overview of Ecosystem Issues
 Gruel, blomass and water composite
 Vegetation Type
 Overview of vegetation type
 Oraction herbaceous
 Fraction herbaceous
 Fraction shrub
 Management / Disturbance History
 A Carbon Fluxes
 OFP
 OIPP tree
 NPP shrub
 NPP herb
 Water Fluxes and Supply

▼ Carbon Stocks
 ▼ Fuels

Select viewing mode: Single year Compare years

Ecosystem Overview -RGB

Opacity: 78%

Fuel: brighter red is more fuel

Biomass: brighter green is more biomass

Runoff: brighter blue is more runoff

Runoff: 2017 (very wet year)

Runoff: 2018 (dry year)

Projected flame length: 2018 conditions

Management effects on flame length: 50% reduction in shrub canopy & dead surface fuel, 25% reduction in tree canopy

North Yuba partnership

Partnerships facilitate planning, permitting, <u>financing</u>, implementation, monitoring, research, communication, public support

Leokout above New Bullards Bar, July 2021